Synthesis, ring transformations, IR-, NMR and DFT study of heterocycles with two ferrocenyl units ${ }^{\text {w }}$

Balázs Fábián ${ }^{\text {a }}$, Antal Csámpai ${ }^{\text {b,* }}$, Tibor Zs. Nagy ${ }^{\text {a }}$, Mátyás Czugler ${ }^{\text {c }}$, Pál Sohár ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Protein Modelling Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Hungary
${ }^{\mathrm{b}}$ Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest-112, Hungary
${ }^{\text {c }}$ Chemres Institute of Structural Chemistry Chemical Research Center, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri Str. 59-67, Hungary

A R T I C L E I N F O

Article history:

Received 11 June 2009
Received in revised form 21 July 2009
Accepted 24 July 2009
Available online 30 July 2009

Keywords:

Ferrocene
Heterocycles
Ring transformation
Organocatalysis
NMR X-ray diffraction
DFT

Abstract

Cyclization of 1,5-bis(ferrocenylmethylidene)thiocarbonohydrazide with DMAD afforded diastereomeric dimethyl-thiazole-4,5-dicarboxylates. The cis-isomer undergoes ring opening and recyclization to a thiazolone derivative. A further thiazolone was obtained from this precursor with ethyl chloroacetate employing a bifunctional organocatalyst. Due to its propensity to dehydrogenation evidenced by DFT calculations, the studied thiocarbonohydrazide underwent oxidative cyclizations under different conditions to yield a 1,3,4-thiadiazole and a 1,2,4-triazole derivative, respectively. Thermal isomerisation of 1,3,4thiadiazole into 1,2,4-triazole was also observed. The DMAD-mediated cyclizations of the S-metylated thiocarbonohydrazide and the 1,5-bis(ferrocenylmethylideneamino)guanidine gave 1,2,4-triazole derivatives and a 4-pyrimidone, respectively. The structure of the new compounds was established by IR and NMR spectroscopy, including HMQC, HMBC and DEPT measurements. The solid state structure of a triazole was revealed by single crystal X-ray analysis.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades the chemistry of ferrocenes has attracted remarkable attention due to their wide range of applications in material sciences, catalysis [1], biological studies and even in therapy [2]. Our group have also synthesized and characterized a variety of ferrocene-containing heterocycles [3,4] with potential and - in a few cases [3] - proved biological activity, including ferrocenyl-pyrazoles- and pyrazolines-, imidazoles-, dia-zepines-, oxazoles- and pyridazines. In our previous paper [4] we have reported facile DMAD-mediated cyclization reactions of the easily available thiosemicarbazones of formyl- and acetylferrocene and their S-methyl derivatives affording biologically promising sulfur heterocycles (thiazolone-, thiazole-, 1,3-thiazin-4-one and methylthio-substituted nitrogen heterocycles (imidazole-3-ones, pyrimidine-4-ones), respectively, carrying at least one carbomethoxy group which provides further possibility for a variety of coupling reactions including e.g. fixation to peptide carriers. Since according to the literature data numerous representatives of these heterocycles possess valuable pharmaceutical properties including

[^0]anticancer effects [5-8], we continued this research by performing analogous syntheses of such sulfur- and nitrogen heterocycles which incorporate two ferrocenyl groups expected to display enhanced biological activity in ongoing biological tests on tumourous cell lines.

2. Results and discussion

The cyclization of 1,5-bis(ferrocenylmethylene)carbonohydrazide $\mathbf{1}$ with DMAD was conducted employing argon atmosphere and MeCN as solvent at reflux temperature (Method A, Scheme 1) to obtain novel sulfur heterocycles with two ferrocene units. The relatively short reaction (1 h) gave a thiazol-4-one (2) together with diastereomeric thiazole-dicarboxylates (cis-3 and trans-3) in comparable yields (22% for $\mathbf{2 , 2 9 \%}$ for cis-3 and 25% for trans-3). When the reaction time was increased up to 5 h , the formation of cis- $\mathbf{3}$ could not be detected even in traces, while the yield of $\mathbf{2}$ considerably increased (69\%) with the simultaneous decrease in the yield of trans-3 (10\%). Accordingly, more prolonged treatment (8 h) resulted $\mathbf{2}$ as a sole product in good yield (77\%). These experiments refer to the mechanism with the primary conjugate addition of the sulfur centre on the activated carbon-carbon triple bond followed by the reversible cyclization of primary adducts Z-I and $E-I$ leading to the formation of the mixture of trans- $\mathbf{3}$ and cis- $\mathbf{3}$ as isolable products. The irreversible cyclization of Z-I gives thiazolone $\mathbf{2}$ as final product. In another pathway intermediate Z-I can also be formed by the epimerization of the less stable cis-3

A: DMAD, MeCN, reflux, Ar; B: MeCN, reflux, 8h, Ar.

Scheme 1.

and the reversible ring opening of the resulted trans-3. As an experimental evidence for this assumed mechanism, epimerization cis- $\mathbf{3} \rightarrow$ trans- $\mathbf{3}$ taking place in CDCl_{3} at RT could be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In accordance with the above transformation trans- $\mathbf{3} \rightarrow \mathbf{2}$ could be achieved in excellent yield (91\%) by prolonged heating (8 h) in MeCN (Method B, Scheme 1). It is worth to note that the analoguous cyclization of the diphenyl analogue of 1 effected by DMAD has been reported to afford a thiazolone analogous to $\mathbf{2}$ as a single isolable product without being contaminated by thiazole-dicarboxylates [9].

Searching for expedient ways to purely nitrogen heterocycles with two ferrocene moieties we attempted DMAD-mediated cyclizations of the methylthio derivative 4, which was obtained by standard alkylation procedure (Method C) from 1, and the bis-ferrocenyl-hydrazone of N, N^{\prime}-diaminoguanidine 6, respectively (Scheme 2). Under the conditions of Method A (see in Section 1) 4 underwent 1,5-cyclization associated either with dehydrogenation or conjugate addition on the reagent resulting in triazole 5 (54\%) and triazoline 8 (21\%), respectively (Scheme 2). The basic guanidine precursor $\mathbf{6}$ with enhanced affinity to the electrophilic reagent afforded pyrimidone $\mathbf{7}$ isolated as single product (Scheme 2) with acceptable yield (62\%).

In order to get a further diferrocenylthiazolone 9 related to $\mathbf{2}$ without substituent at pos. 5 we attempted the chloroacetic acid-
mediated cyclization of $\mathbf{1}$ involving S-alkylation and subsequent intramolecular acylation (Scheme 3). To our surprise, the treatment of 1 under the conditions employing NaOMe as base in refluxing methanol (Method D) led to the formation of [1,3,4]thiadiazole $10(32 \%)$ and [1,2,4]triazole-3-thion 11 (9%) without being accompanied by the desired thiazolone 9 , but contaminated by a considerable amount of tarry substances. When the reaction was conducted in degassed methanol under argon for 1 h (Method E), a very similar product distribution with somewhat higher yields (40% for 10 and 14% for 11) was observed suggesting that the reagent might presumably act as an oxidant. Better yields of the cyclic products (62% for $\mathbf{1 0}$ and 27% for $\mathbf{1 1}$) were achieved when the oxidation of $\mathbf{1}$ was carried out by FeCl_{3} in ethanolic solution (Method F , Scheme 3) representing the conditions employed for the preparation of the diaryl analogues of $\mathbf{1 0}$ [10]. Supporting the triazole structure of 11, its methylation by method C took place smoothly to give methylthiotriazole 5 (Scheme 3) in good yield (82%) which was previously identified as major product in the DMAD-mediated oxidative cyclization of 4 (Scheme 2). Accordingly, alternative intramolecular addition either by the sulfur or one of the nitrogen atoms on the $\mathrm{C}=\mathrm{N}$ bond and subsequent dehydrogenation ($\mathbf{1} \rightarrow \mathbf{I I} \rightarrow \mathbf{1 0}$ and $\mathbf{1} \rightarrow \mathbf{I I I} \rightarrow \mathbf{1 1}$, respectively, Scheme 3) can be considered as possible, but not exclusive pathways for the formation of $\mathbf{1 0}$ and 11. Intermediate IV must also be taken into

C: Mel / NaOMe, MeOH, reflux 1h, Ar
Scheme 2.

Scheme 3.
account for the transformations $\mathbf{1} \rightarrow \mathbf{1 0}$ and $\mathbf{1} \rightarrow \mathbf{1 1}$ as nitrilimines analogous to IV have also been proposed for the iron(III)chloridemediated oxidative cyclization of diaryl-substituted thiocarbonohydrazides affording [1,2,4]thiadiazoles [10]. The view about the transitional formation of IV was also supported by the following experiment. Although $\mathbf{1 0}$ was the major product in each oxidative cyclization discussed here (Methods D-F), on heating in refluxing xylene for 5 h under argon (Method G, Scheme 3) this heterocycle got converted into 11 in mediocre yield (50\%), as the reaction was again accompanied by the formation of tarry substances. In accord with this experiment, the energy values obtained for these two isomers by DFT calculations [11] at B3LYP/6-31G(d,p) level of theory show that the triazole is more stable than the thiadiazole $[\Delta E(\mathbf{1 1 - 1 0})=-55.5 \mathrm{~kJ} / \mathrm{mol}]$ pointing to that the oxidative cyclizations take place under kinetic control. Isomerization $\mathbf{1 0} \rightarrow \mathbf{1 1}$ presumably proceeds through the reversible endothermic ring opening to nitrilimine IV $[\Delta E(\mathbf{I V}-\mathbf{1 0})=131.7 \mathrm{~kJ} / \mathrm{mol}]$. In principle this intermediate can undergo two types of endothermic reversible proton migrations giving two tautomers V and VI, respectively $[\Delta E(\mathbf{I V}-\mathbf{V})=46.8 \mathrm{~kJ} / \mathrm{mol}, \Delta E(\mathbf{I V}-\mathbf{V I})=110.4 \mathrm{~kJ} / \mathrm{mol}]$ of which exothermic cyclizations construct directly $[1,2,4]$ triazole ring $\left[\mathbf{V} \rightarrow \mathbf{1 1}^{\prime}(\Delta E=-156.7 \mathrm{~kJ} / \mathrm{mol})\right.$ and $\mathbf{V I} \rightarrow \mathbf{1 1}(\Delta E=-187.2 \mathrm{~kJ} /$ $\mathrm{mol})$]. In accord with the spectroscopic data (discussed later) the energetics calculated for $\mathbf{1 1}$ and 11' show that the triazole-thion structure is more stable than the thiol tautomer [$\triangle E\left(\mathbf{1 1}^{\prime}-\right.$ 11) $=75.7 \mathrm{~kJ} / \mathrm{mol}$]. Comparing the energetics calculated for the possible elementary steps it can be suggested that the pathway
including intermediates IV, \mathbf{V} and $\mathbf{1 1}^{\prime}$ seems to be the most likely for the thermal isomerization $\mathbf{1 0} \boldsymbol{\mathbf { 1 1 }}$ carried out under the conditions of method G.

Avoiding undesired oxidative transformations we found a convenient synthetic route to diferrocenylthiazolone 9 which proceeds through the primary S-alkylation of $\mathbf{1}$ with ethyl chloroacetate using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base and acetone as solvent to obtain ester 12 (Method H, Scheme 3). In the second step 12 was cyclized under mild conditions by the bifunctional organocatalyst N -(2-dimethylamino)-cyclohexyl- N^{\prime}-[3,5-bis(trifluormethyl]phen-ylthio-urea developed by Takemoto and co-workers [12] (Method I: Scheme 3).

The relative stability of intermediate IV was interpreted by B3LYP/6-31 G(d,p) modelling. The energetics of the hypothetical oxygen-mediated dehydrogenations of selected models 1, 13, 14 and 15 (Scheme 4) indicate that the contribution to the stabilization of nitrilimines IV, VII-IX highly depends on the number and the structure of the terminal substituents. In keeping with our expectations, due to the presence of two ferrocenyl groups nitrilimine IV was found to be the most stable intermediate studied in this series. As it can be concluded from the almost identical values calculated for ΔE_{2} and ΔE_{3} (Scheme 4) the contribution to nitrilimine-stabilization from one ferrocenyl group is approximately equivalent to that provided by two phenyl groups. In accord with the calculated ΔE values facile thiazolone-forming cyclizations of $\mathbf{1 3}$ and $\mathbf{1 4}$ with chloroacetic acid have been reported [13,14].

Calculated energetics [B3LYP / 6-31 G(d,p)] representing substituent-dependency
for the dehydrogenation of models 1, 13-15.

Scheme 4.

In order to gain further support for the substituent-dependency of the studied models to undergo dehydrogenation, we reacted 14 with chloroacetic acid using the conditions of Methods D and E, respectively, and obtained thiazolone $\mathbf{1 6}$ in acceptable yields (Scheme 5).

It is worth to compare the structures of two precursor/intermediate pairs $\mathbf{1} / \mathbf{I V}$ and $\mathbf{1 3} / \mathbf{V I I}$, respectively, resulted from geometry optimization as global minima. While the coplanar structure of $\mathbf{1 3}$ is retained in VII, on dehydrogenation of $\mathbf{1}$ the coplanarity of the substituted Cp rings ceased to exist and a twisted conformation with almost perpendicular ferrocenyl groups (interplanar angle between their Cp rings: $\Theta=97.1^{\circ}$) is adopted by IV (Fig. 1). The stability of intermediate IV might be at least partially ascribed to weak bonding overlaps between iron-centred d-type donor ferro-cene-orbitals and the acceptor π^{*}-orbital of the linear electrondeficient nitrilimine group (Fig. 2). Analogous interactions are well-documented for a number of related ferrocene derivatives containing strong π-acceptor moiety directly attached to the ferrocenyl group [15]. The same structural difference was disclosed by DFT analysis of model pairs $\mathbf{1 4} /$ VIII and $\mathbf{1 5} /$ IX (Scheme 4).

3. Structure determination

The supposed structures of our new compounds can be deduced unambiguously from the spectral data (Tables 1-4). Only the following additional remarks are necessary:

In 2 a very stable planar conformation, stabilized by a chelatetype H-bond-like six-membered interaction between the azome-thine-H in the side chain in Pos. 2, is plausible and with the S atom and ester carbonyl O simultaneously on the one hand and between the other azomethine $-\mathrm{H}(\mathrm{FcCH}=\mathrm{N}$ group in Pos. 3) and the O atom of the amide group or the N atom attached to $\mathrm{C}-2$. Accordingly, $\nu \mathrm{C}=\mathrm{O}$ IR frequencies have unusually low values (1705 and

$$
14 \longrightarrow \text { DorE }
$$

D: $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{MeOH}, \mathrm{NaOMe}$, reflux 1 h ;
E: $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{MeOH}, \mathrm{NaOMe}$, reflux 1 h , Ar
Scheme 5.
$1609 \mathrm{~cm}^{-1)}$, while the ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{N}=\mathrm{CH}$ groups in 2 are downfield-shifted (8.43 and 8.75 ppm , respectively) relative to those of 1.

The isomeric structures of compounds cis-3 and trans-3 follows straightforwardly from the values of vicinal couplings of $\mathrm{H}-4$ and $\mathrm{H}-5$ being 7.7 and 3.0 Hz , respectively, due to $\sim 0^{\circ}$ and $\sim 144^{\circ}$ dihedral angles [16]. Further proofs are the chemical shifts of these H's, which are higher in the trans isomer (by 0.39 and 0.35 ppm , respectively) as a consequence of the anisotropic neighbouring effect of the ester group on the same side of the ring, resulting in downfield shift [17a].

The oxidative ring closure, thus the structure of 5 follows from the absence of the NH and one of the $\mathrm{CH}=\mathrm{N}$-hydrogens as confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum and the absence of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR signals of the DMAD moiety.

The six-membered structure of compound 7 is supported by the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ spectrum in which a cross-peak between the olefinic CH (6.05 ppm) and the N atoms of the amide and NH groups, respectively (at 152 and 129 ppm) prove three-bond interactions. The other regioisomer (with the amide $C=0$ and the ester-substituted $s p^{2} C$ in the ring in reversed positions) can be excluded on the basis of the ${ }^{15} \mathrm{~N}$ NMR shifts: $\mathrm{Fc}-\mathrm{CH}=\mathrm{N}$ group is attached to the amide-NH and its signal lies at 152 ppm , downfield-shifted relative to the NH , having signal at 129 ppm as confirmed by the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}-\mathrm{HMBC}$ cross-peaks. The extremely downfield-shifted signal of the azomethine- H of the $\mathrm{FcCH}=\mathrm{N}$ group attached to the $s p^{3} \mathrm{~N}$ atom is explainable by the anisotropy of the coplanar amide carbonyl [17b] and a chelate-like H-bond between them.

The structure of $\mathbf{8}$ is obvious from the presence of two carbomethoxy and the methine groups (see e.g. the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR lines of the latter at 6.09 and 75.0 ppm , respectively). The E configuration of the $-\mathrm{CE}=\mathrm{CHE}$ side chain $\left(\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}\right)$ was found out by a DIFFNOE measurement which proved the proximity of the ringmethine ($\mathrm{H}-5$) and the olefinic H atoms. The upfield lying $\mathrm{N}=\mathrm{CH}$ signal at 7.26 ppm (the corresponding values of the other compounds fall into the interval 7.93-9.32 ppm) is probably the consequence of the anisotropic shielding of the $C\left(s p^{3}\right)-F c$ moiety being in steric proximity.

The three carbon lines - disregarding the signals of the ferrocene moieties - confirmed ring closure of the starting compound 1 without the participation of the reaction partner in the reactions resulted in 10 and 11. Thus, only the thiadiazole (10) and triazolethione structures ($\mathbf{1 1}$) should be considered. The ${ }^{13} \mathrm{C}$ NMR chemical shifts suggest hetero aromatic structure $\mathbf{1 0}$ on the basis of two downfield lying lines (at 169.3 and 183.6 ppm) and of one much

1

13

IV

VII

Fig. 1. Structures of model pairs $\mathbf{1} /$ IV and $\mathbf{1 3} /$ VII optimized at B3LYP/6-31 $G(d, p)$ level of DFT.

Fig. 2. Simplified illustration of the interactions between iron-centred d-type donor orbitals and the vertically oriented acceptor π^{*}-orbital of the nitrilimine motiety in IV and VII.
more shielded carbon (its line is at 145.9 ppm) characteristic of a $\mathrm{CH}=\mathrm{N}-\mathrm{NH}$ group (see below). The significant downfield shift of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR signals of the CH group in $\mathbf{1 1}$ is explainable by the anisotropy of the thiocarbonyl group [17c] and for the ${ }^{1} \mathrm{H}$ NMR signal also by a weak $\mathrm{H} \cdots \mathrm{S}=$ bond. In the partly saturated ring the $\mathrm{C}=\mathrm{N}$ carbon and the thiocarbamide carbon have upfieldshifted lines (at 150.1 and 161.9 ppm) as compared to $\mathbf{1 0}$. Hence, the assignments of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra to the two struc-
tures $\mathbf{1 0}$ and $\mathbf{1 1}$ are straightforward. Triazole $\mathbf{1 1}$ was also indirectly identified through its S-methyl derivative $\mathbf{5}$ analyzed by single crystal X-ray diffraction (see later).

For compound 12 the S -alkylation is unquestionable due to chemical shift (32.8 ppm) of the SCH_{2} group. Similarly, the carbon shift of the SCH_{2} group in $\mathbf{1 6}$ appears in the expected interval at 33.8 ppm [17d,18a].

As a result of molecular asymmetry (presence of chiral centra) the chemical non-equivalence of the atom-pairs $\mathrm{H} / \mathrm{C}-2,5$ and H / C 3,4 in ferrocene moieties for compounds cis-3, trans-3 and $\mathbf{8}$ is noteworthy.

The signal of the substituted C of ferrocene is upfield-shifted in compounds 5 and 11 (71.0 and 70.1 ppm , respectively, while values of $75.6-80.6 \mathrm{ppm}$ were measured for the other cases) because the ferrocenyl groups are attached in these compounds to the aromatic triazole ring. Again, in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ this signal is downfield-shifted to 83.6 ppm , as also expectable [18b][18b], due to the neighbouring $s p^{3}$ carbon.

Table 1
${ }^{1} \mathrm{H}$ NMR data ${ }^{\mathrm{a}, \mathrm{b}}$ of compounds 1, 2, trans-3, cis-3, 412 and 16. ${ }^{\text {c }}$

Compound	$\mathrm{SCH}_{3} s(3 \mathrm{H})$	$\mathrm{OCH}_{3} s(3 \mathrm{H})$	$\mathrm{N}=\mathrm{CH} s(1 \mathrm{H})^{\text {d }}$	$\mathrm{N}=\mathrm{CH} s(1 \mathrm{H})^{\mathrm{e}}$	H-2-5 ${ }^{\text {f }}$	H-2,5 (2H)	H-3,4 (2H)	H-2-5 ${ }^{\text {f }}$	H-2,5 (2H)	H-3,4 (2H)	NH s, br
					$C p$ ring ${ }^{\text {d }}$			$C p$ ring ${ }^{\text {e }}$			
1	-	-	-	8.17	4.25	4.72	4.45	-	-	-	10.99
2	-	3.89	8.43	8.75	4.37	4.72	4.46	4.20	4.84	4.58	-
trans-3 ${ }^{\text {g }}$	-	3.83, 3.84	8.28	8.66	4.21	4.61	4.37	4.23	4.63	4.40	-
cis-3 ${ }^{\text {8 }}$	-	3.80, 3.81	8.25	8.82	4.31	4.61	4.38	4.20	4.67	4.43	-
4	2.30	-	8.14	8.06	$4.21{ }^{\text {h }}$	4.79	4.43	$4.21{ }^{\text {h }}$	4.54	4.38	10.50
5	2.78	-	-	8.45	$4.15{ }^{\text {i }}$	4.91	4.35	$4.37^{\text {i }}$	4.86	4.66	-
6	-	-		7.95	-	-	-	4.20	4.71	4.39	11.6^{j}
7	-	3.82	8.33	9.23	4.31	4.64	4.45	4.20	4.75	4.52	8.97
$8^{\text {g }}$	2.53	3.71, 3.98	-	7.26	$4.15{ }^{\text {i }}$	4.49	4.33	$4.24{ }^{\text {i }}$	4.26	4.15	-
9	$3.82{ }^{\text {k }}$	-	8.62	8.32	4.34	4.80	4.53	4.16	4.65	4.39	-
10	-	-	-	7.93	$4.20{ }^{\text {i }}$	4.81	4.47	$4.24{ }^{\text {i }}$	4.63	4.44	12.0
11	-	-	-	9.32	4.41	4.84	4.47	4.12	4.91	4.70	13.8
12	$3.72{ }^{\text {k }}$	4.10^{1}	8.00	8.04	$4.16^{\text {i }}$	4.74	4.40	$4.19^{\text {i }}$	4.52	4.36	10.57
16	$3.84{ }^{\text {k }}$	-	8.20	-	4.20	4.65	4.46	-	-	-	11.8

[^1]Table 2
${ }^{13} \mathrm{C}$ NMR chemical shifts ${ }^{\text {a }}$ of compounds 1,2, trans-3, cis-3, 412 and $16 .{ }^{\text {b }}$

Compound	SCH_{3}	OCH_{3}	$\begin{aligned} & \mathrm{C}-1-5 \\ & \mathrm{Cp}^{\mathrm{c}, \mathrm{~d}} \end{aligned}$	C-1	C-2,5	C-3,4	C-1-5	C-1	C-2,5	C-3,4	C-2	$\mathrm{CH}=\mathrm{N}$	$\mathrm{CH}=\mathrm{N}$	$\mathrm{C}=\mathrm{O}$ or
				Substituted $C p$ ring ${ }^{\text {d }}$			$\mathrm{Cp}^{\text {c,e }}$	Substituted $C p$ ring ${ }^{\text {e }}$			$\mathrm{Hc}^{\text {f }}$	group ${ }^{\text {d }}$	group ${ }^{\text {e }}$	$\mathrm{C}=\mathrm{S}^{\mathrm{g}}$
1	-	-	69.9	79.9	68.6	70.9	-	-	-	-	-	-	148.4	174.4
2	-	52.9	$69.9{ }^{\text {h }}$	77.9	69.3	71.7	70.7	75.4	$69.9{ }^{\text {h }}$	72.8	155.3	162.0	170.4	166.9
trans-3 ${ }^{\text {i }}$	-	53.5, 53.9	$69.9{ }^{\text {j }}$	79.4	$68.7{ }^{\text {k }}$	$70.88{ }^{1}$	$69.7{ }^{\text {j }}$	79.2	$68.51{ }^{\text {k }}$	70.7^{1}	160.6	156.3	153.3	170.05, 170.07
cis-3 ${ }^{\mathbf{3}}$	-	53.1, 53.6	70.0^{j}	79.3	68.4	70.73	$69.7{ }^{\text {j }}$	78.2	68.5	71.15	162.9	156.4	160.1	168.7, 169.0
4	13.2	-	$69.8{ }^{\text {h }}$	80.6	68.9	70.7	$69.8{ }^{\text {h }}$	80.7	67.7	70.4		154.3	143.0	-
5	15.8	-	$70.01^{\text {j }}$	71.0	68.7	69.97	$70.4{ }^{\text {j }}$	75.5	69.7	72.9	153.2	-	168.4	-
6	-	-	-	-	-	-	69.7	81.0	68.2	70.5	-	-	146.9	-
7	-	52.4	$70.3{ }^{\text {j }}$	78.5	68.8	71.4	$69.8{ }^{\text {j }}$	77.6	69.0	72.0	148.0	159.4	162.1	165.2
$8{ }^{\text {i }}$	13.6	51.7, 53.3	$70.1{ }^{\text {j }}$	86.3	68.1	$68.4{ }^{\text {h }}$	$69.7{ }^{\text {j }}$	79.6	67.4	70.46	75.0	-	140.6	164.4, 167.7
9	$31.5{ }^{\text {m }}$	-	$70.6{ }^{\text {j }}$	75.6	69.83	72.5	$69.80^{\text {j }}$	78.5	69.0	71.2	158.9	170.4	160.0	168.1
10	-	-	$70.7{ }^{\text {j }}$	76.4	68.4	70.6	$69.8{ }^{\text {j }}$	80.2	67.9	70.8	183.6	-	145.9	-
11	-	-	71.0^{j}	70.1	$68.7^{\text {n }}$	$70.9{ }^{\text {n }}$	$70.3^{\text {j }}$	76.1	$69.9{ }^{\text {n }}$	$73.1{ }^{\text {n }}$	-	-	170.7	161.9
12	$32.8{ }^{\text {m }}$	61.5°	$69.80^{\text {j }}$	80.4	69.0	70.9	$69.76{ }^{\text {j }}$	80.6	67.8	70.6	-	154.8	143.4	170.2
16	$33.8{ }^{\text {m }}$	-	70.0	79.3	68.9	71.4	-	-	-	-	175.0	157.7	-	162.8

 group: 159.4 (4), 173.0 ($\mathbf{6}), 157.9$ (12); C-6 ${ }^{\text {f }}: 138.5$ (7); $\mathrm{N}-\mathrm{C}=$ (quat., side chain): 149.4 (8); $\mathrm{CH}_{3}(\mathrm{OEt}, \mathbf{1 2}$): 15.1.
${ }^{\mathrm{b}}$ Assignments were supported by HMQC (except for 16) and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ - HMBC (except for $\mathbf{6}$, for $\mathbf{2}$, trans-3, 4, 7, $\mathbf{8}$ and $\mathbf{1 1}$ also by ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$-HMBC), for trans-3, cis-3, 4, 7-9, 11 and 12 also by DEPT measurements.
${ }^{\text {c }}$ Unsubstituted Cp ring.
${ }^{d} \mathrm{Fc}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=$ group, for $\mathbf{8}$ and $\mathbf{1 1} \mathrm{Fc}-\mathrm{C}\left(s p^{3}\right)$ and $\mathrm{Fc}-\mathrm{C}_{\text {quat }}\left(s^{2}\right)$, respectively.
${ }^{e} \mathrm{Fc}-\mathrm{CH}=\mathrm{N}-\mathrm{N}\left(s p^{3}\right)$ group.
${ }^{\mathrm{f}} \mathrm{Hc}=$ in heteroring.
${ }^{\mathrm{g}}$ Ester, $\mathrm{C}=\mathrm{S}$ for $\mathbf{1}$ and 11, lactame for 9.
${ }^{h}$ Two overlapping lines.
${ }^{i}$ Due to molecular asymmetry (presence of chiral centra) the 2,5 - and $3,4 \mathrm{C}$-pairs of subst. Cp rings in Fc are chemically non-equivalent. The counterparts of the lines given in the table: C-2,5: $68.53^{\mathrm{h} . \mathrm{j}}$ (trans-3), $68.8^{\mathrm{d}}, 69.2^{\mathrm{e}}$ (cis-3), $68.0^{\mathrm{d}}, 68.4^{\mathrm{e}, \mathrm{h}}(\mathbf{8}), \mathrm{C}-3,4: 70.8^{1}$ and 70.93^{1} (trans-3), $70.78^{\mathrm{d}}, 71.19^{\mathrm{e}}$ (cis-3), 69.0 ${ }^{\mathrm{d}}, 70.5^{\mathrm{e}}(\mathbf{8})$.
${ }_{\mathrm{j}, \mathrm{k}, 1}$ Interchangeable assignments.
${ }^{m} \mathrm{SCH}_{2}$.
${ }^{n}$ Broad.
${ }^{\circ} \mathrm{OCH}_{2}$.

Table 3
Characteristic IR frequencies [cm^{-1}] of compounds 1, 2, trans-3, cis-3, 4-12 and $\mathbf{1 6}$ (in KBr discs).

Compound	$v \mathrm{NH}^{\mathrm{a}}$ band	$\nu \mathrm{C}=\mathrm{O}$ band	Amide-I band	$\nu \mathrm{C}=\mathrm{N}$-type band ${ }^{\text {b }}$	$v \mathrm{C}-\mathrm{O}$ bands	$v_{\mathrm{as}} \mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ and tilt of Cp
1	3300-2750	-	-	1606, 1524	-	482
2	-	1705	1625	1609	1241, 1198	500, 485
trans-3	-	1761, 1737	-	1611	1227, 1201, 1170	483
cis-3	-	1740	-	1614, 1568	1213, 1002	498
4	3237, 3120	-	-	1549, 1520	-	481
5	-	-	-	1582, 1557	-	502, 485
6	3500-2000	1710	-	1665	-	505, 482
7	~3410	1730	1638	-	1247, 1155	~500, 484
8	-	1749, 1697	-	1589, 1556	1221, 1152	~500, 485
9	-	-	1719	1613	-	531
10	3000-2500	-	-	1600, 1584	-	497, 483
11	3500-2000	-	-	1587	-	504, 482
12	~3300	1737	-	-	1284, 1106	484
16	3500-2000	-	1718	1631	-	511, 479

${ }^{a}$ Diffuse (1, 6, 10, 11, 16), broad (4, 7, 12).
${ }^{\mathrm{b}}$ Thiocarbamide group (guanidine group for $\mathbf{6}$).
${ }^{\text {c }}$ Overlapped maxima.

Table 4
${ }^{15} \mathrm{~N}$ NMR chemical shifts ${ }^{\text {a }}$ of compounds $2,4,7,8$ and $11 .{ }^{\text {b }}$

Compound	$\mathrm{N}\left(s p^{3}\right)$	$\mathrm{C}_{\text {quat }}=\mathrm{N}$	$>\mathrm{N}-\mathrm{N}=\mathrm{CH}$	$=\mathrm{N}-\mathrm{N}=\mathrm{CH}$
2	191	306	293	336
4	155	264	306	330
7	$129,152^{\mathrm{c}}$	254	298	328
8	161,163	162	304	-
11	211	261	291	-

[^2]Of course the azomethine ${ }^{1} \mathrm{H}$ NMR chemical shift depends on the character of the N -substituent: for $\mathrm{CH}=\mathrm{N}-\mathrm{NH}-$ groups we measured values between 143 and $148 \mathrm{ppm}(\mathbf{1}, \mathbf{4}, \mathbf{6}, 10$ and $\mathbf{1 2}$). In case of $\mathrm{CH}=\mathrm{N}-N$ groups, where N is an imide type atom $[=\mathrm{N}-$ $N(\mathrm{C}=\mathrm{X})_{2}, \mathrm{X}: \mathrm{O}, \mathrm{S}$ or N$]$, the signal is shifted in the opposite direction (to ca. 170 ppm, c.f. the data stated for compounds $\mathbf{2 , 9} 9$ and 11).

X-ray diffraction revealed the expected constitution of 5 (Fig. 3). Interplanar angles of the anchored $C p$ rings (atoms $C 4->C 8$) and ($\mathrm{C} 14->\mathrm{C} 18$) to each other and to the five-membered ring are ca. $71^{\circ}, 63^{\circ}$ and 11°, respectively. Sole existence of weak electrostatic interactions may be responsible for the relative weak cohesion between molecules in the crystal. Thus an indirect explanation for the

Fig. 3. A 50% atomic displacement probability plot of $\mathbf{5}$ in the crystal. Characteristic bond distances in the [1,2,4]triazole ring and its immediate vicinity (in \AA): $S(1)-C(1)$ 1.750(6), N(1)-N(2) 1.398(8), N(1)-C(2) 1.333(9), N(2)-C(1) 1.309(9), N(3)-N(4) $1.426(7), \mathrm{N}(3)-\mathrm{C}(1) 1.364(9), \mathrm{N}(4)-\mathrm{C}(3) 1.282(9), \mathrm{N}(3)-\mathrm{C}(2) 1.387(8), \mathrm{C}(2)-\mathrm{C}(14)$ $1.421(10)$ and $C(3)-C(4) 1.447(9)$. Geometry around Fe metals involving ring centroids: $\mathrm{Cg}(2)-\mathrm{Fe}(1) \quad 1.657(3) \AA, \quad \mathrm{Cg}(3)-\mathrm{Fe}(1) \quad 1.668(3) \AA, \quad \mathrm{Cg}(2)-\mathrm{Fe}(1)-\mathrm{Cg}(3)$ $176.22(17)^{\circ}, \mathrm{Cg}(4)-\mathrm{Fe}(2) 1.653(3) \AA{ }^{\circ}, \mathrm{Cg}(5)-\mathrm{Fe}(2) 1.658(3) \AA{ }^{\circ}, \mathrm{Cg}(4)-\mathrm{Fe}(2)-\mathrm{Cg}(5)$ $178.15(18)^{\circ}$.
disposition for twining is given (see also Fig. 4, deposited). Most apparent of such feeble contacts, as represented by their D-H $\cdots \mathrm{A}$ geometry, are $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2_{|2-x,-y, 2-z|}$ at $0.96 \AA, 2.45 \AA, 3.31(1)$ $\AA \AA, 150^{\circ}$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 1_{|1 / 2+x, 1 / 2-y, 1 / 2+z|} 0.95 \AA$, $2.49 \AA$ A $3.41(1) \AA$, 163°, respectively. A third such contact may be the almost exact placement of the S atom over the ring centre of a neighbouring triazole ring at a distance of ca. 3.91 Å.

4. Conclusion

Besides DMAD employing further activated acetylene components for the cyclization reactions of easily available diferroce-nyl-thicarbonohydrazide and related precursors discussed in this contribution may open up facile synthetic routes to a variety of novel diferrocenyl-substituted S,N- and N, N heterocycles of potential biological interest. Our reaction conditions allow to control the product ratio of diastereomeric 2-hydrazono-thiazolidines and thiazolone by the choice of the reaction time. The two-step protocol involving organocatalytic intramolecular acylation can be considered as being applicable to the expedient syntheses of related thiazolones carrying aralkylidenehydrazono- and amino functionalities. The detected propensity of the investigated diferr-ocenyl-thiocarbonohydrazide to undergo oxidative cyclizations via ferrocenyl-stabilized nitrilimine intermediate must be taken into account during other manipulations with this easily accessible precursor. It was also evidenced by both theoretical and preparative

Fig. 4.
methods that the related ferrocenylthio-semicarbazone has decreased sensitivity towards oxidation allowing more predictable reactions to be carried out.

5. Experimental

All chemicals were obtained from commercially available sources and used without further purification (Aldrich, Fluka). Each flash silica gel column chromatography was carried out on Merck Kieselgel 60 (230-400 mesh). Melting points were determined with a Boethius microstage. The IR spectra were run in KBr disks on a Bruker IFS-55 FT-spectrometer controlled by Opus 3.0 software. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO- d_{6} or CDCl_{3} solution in 5 mm tubes at RT, on a Bruker DRX-500 spectrometer at $500\left({ }^{1} \mathrm{H}\right)$, and $125\left({ }^{13} \mathrm{C}\right)$ with the deuterium signal of the solvent as the lock and TMS as internal standard. The ${ }^{15} \mathrm{~N}$ NMR chemical shifts were obtained and assigned from the ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HMBC spectra with $\mathrm{NH}_{3}($ liq $)$ as external reference at 50 MHz . The standard Bruker microprogram NOEMULT to generate NOE and to get DIFFNOE spectra was used. DEPT spectra were run in a standard manner, using only a $\Theta=135^{\circ}$ pulse to separate the $\mathrm{CH} / \mathrm{CH}_{3}$ and CH_{2} lines phased "up" and "down", respectively. The 2D-COSY, HMQC and HMBC spectra were obtained by using the standard Bruker pulse programs. All calculations were carried out with the Gaussian 03 suite of programs [19]. Optimized structures available from the authors were obtained by Becke's three-parameter hybrid functional together with the correlation functional of Lee, Yang and Parr [20] as implemented in gaussian 03 suite of programs using standardized $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set including polarization functions [21]. X-ray diffraction experiment on selected single-crystals were executed at low temperatures (at $T=$ 114(2) K and 135(2) K) on a Rigaku R_axis Rapid IP diffractometer.

5.1. General procedure for the synthesis of compounds $\mathbf{1}$ and $\mathbf{6}$

Formylferrocene ($21.4 \mathrm{~g}, 100 \mathrm{mmol}$) and the corresponding diamine component (55 mmol) $\left(\left(\mathrm{NH}_{2} \mathrm{NH}\right)_{2} \mathrm{CS}\right.$ or $\left.\left(\mathrm{NH}_{2} \mathrm{NH}\right)_{2} \mathrm{NH} . \mathrm{HCl}\right)$ were refluxed in abs. ethanol for 2 h . After evaporation the resulted crude materials were purified by flash column chromatography on silica using DCM as eluent. The isolated products were triturated with n-hexane, filtered off and dried under vacuo.

5.2. 1,5-Diferrocenymethylidenethiocarbonohydrazide (1)

Brown powder; yield: 22.25 g, 89%; mp $173-175^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}$ (498.22): C, 55.45; H, 4.45; N, 11.25; S, 6.44. Found: C, $55.42 ; H, 4.43 ; N, 11.29 \mathrm{~S} ; 6.40 \%$.

5.3. 1,3-Bis(ferrocenylmethylideneamino)guanidine (6)

Dark orange powder; yield: $20.40 \mathrm{~g}, 85 \%$; mp $109-111^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{~N}_{5}$ (481.17): C, 57.41 ; $\mathrm{H}, 4.82 ; \mathrm{N}, 14.55$. Found: C, 57.32; H, 4.94; N, 14.70\%.

5.4. General procedure for the reactions with DMAD (Method A)

The corresponding bis-ferrocenyl derivative ($\mathbf{1 , 4} \mathbf{~ o r ~ 6 : ~} 4 \mathrm{mmol}$), and DMAD ($0.71 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in anhydrous and degassed MeCN (50 mL). The solution was refluxed under Ar for $1-8 \mathrm{~h}$ then evaporated to dryness. The solid residue was triturated with n-hexane and filtered off to remove the excess of DMAD. The deep orange powder was dissolved in DCM (50 ml) and extracted with water ($3 \times 50 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated. The residue was purified by column chromatog-
raphy on silica using chloroform as eluent. The separated products were crystallized with n-hexane.

5.5. Methyl 2-(ferrocenylmethylidenehydrazono)-3-

 (ferrocenylmethylideneamino)-4-oxothiazol-idin-5-ylidene)acetate (2)Dark orange powder; yield: $0.535 \mathrm{~g}, 22 \%$ (from 1, reaction time: 1 h); $1.677 \mathrm{~g}, 69 \%$ (from 1, reaction time: 5 h) and $1.873 \mathrm{~g}, 77 \%$ (from 1, reaction time: 8 h); mp 188-191 ${ }^{\circ} \mathrm{C}$ (decomposed); Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (608.29): C, 55.29; H, 3.98; N, 9.21; S, 5.27. Found: C, 55.35 ; H, 4.04; N, 9.13; S, 5.30\%.
5.6. ($4 R^{*}, 5 R^{*}$)-Dimethyl 2-(ferrocenylmethylidenehydrazono)-3-(ferrocenylmethylideneamino)-thiazolidine-4,5-dicarboxylate (cis-3)

Orange powder; yield: $0.742 \mathrm{~g}, 29 \%$ (from 1, reaction time: 1 h); mp 145-149 ${ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (640.33): C, 54.40 ; H, 4.41; N, 8.75; S, 5.01. Found: C, 54.47; H, 4.37; N, 8.79; S, 4.97\%.

5.7. (4R*,5S*)-Dimethyl 2-(ferrocenylmethylidenehydrazono)-3-

(ferrocenylmethylideneamino)-thiazolidine-4,5-dicarboxylate (trans3)

Orange powder; yield: $0.640 \mathrm{~g}, 25 \%$ (from 1, reaction time: 1 h); $0.256 \mathrm{~g}, 10 \%$ (from 1, reaction time: 5 h); mp 162-164 ${ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (640.33): C, 54.40 ; H, 4.41; N, 8.75; S, 5.01. Found: C, 54.30; H, 4.50; N, 8.84; S, 5.09\%.
5.8. 3-Methylthio-4-(ferrocenylmethylideneamino)-5-ferrocenyl-4-H-1,2,4-triazol (5)

Orange powder; yield: $1.102 \mathrm{~g}, 54 \%$ (from 4, reaction time: 3 h); mp 106-109 ${ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}$ (510.21): C, 56.50 ; H , 4.35; N, 10.98; S, 6.28. Found: C, 56.60; H, 4.31; N, 11.06; S, 6.21\%. Deep red plates suitable to single crystal X-ray analysis were obtained by recrystallization from EtOAc-n-hexane (1:10).

5.9. Crystal data and details of the structure determination of $\mathbf{5}$ (CCDC 727238)

Several crystals were tested with the use of both Cu - and Ag radiations. Their asymmetric rhombic plate shape coupled with extensive twinning and/or rotational disorder in some Cp-groups hampered straightforward analysis for the Cu-radiation dat sets (low-resolution ($d_{\min } \sim 1.2 \AA$) and R-values around $10-12 \%$). However the specimen selected for the Ag-radiation experiment gave better resolution and lower R values, reported here. Initial structure models obtained by direct methods (shelxs-97, Sheldrick, 2008 [22]) was completed and refined by standard procedures to convergence (shelxl-97, Sheldrick, 2008 [23]). $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{~N}_{4}$ S, F.W. 510.22, $\mathrm{Ag} \mathrm{K} \alpha, \lambda=0.56089 \AA, T=136$ (2) K, monoclinic, $P 2_{1} / n$ (No. 14), $\quad a=12.0043(8) \AA, \quad b=11.1630(5) \AA, \quad c=15.9721(8) \AA$, $\beta=100.893(3)^{\circ}, \quad V=2101.8(2) \quad\left[\AA^{3}\right], \quad Z=4, \quad D_{\text {(calc) }}=1.612 \mathrm{Mg} / \mathrm{m}^{3}$, $\mu(\mathrm{Ag} \mathrm{K} \alpha)=0.781 \mathrm{~mm}^{-1}$, total and unique data, 10844 and 3757, $R_{\text {int }}=0.085$, data with $I>2.0 \sigma(I)=3124, N_{\text {ref }}=3757, N_{\text {par }}=285$, $R=0.08, w R^{2}=0.232$.
5.10. Dimethyl 2-(4-(ferrocenylmethylideneamino)-4,5-dihydro-3-(methylthio)-5-ferrocenyl-1,2,4-triazol-1-yl)maleate (8)

Orange powder; yield: $0.550 \mathrm{~g}, 21 \%$ (from 4, reaction time: 3 h); mp 96-98 ${ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (654.36): C, 55.07; H, 4.62; N, 8.56; S, 4.90. Found: C, 55.12; H, 4.55; N, 8.49; S, 4.93\%.
5.11. Methyl 2-(ferrocenylmethylidenehydrazono)-1-
(ferrocenylmethylideneamino)-1,2,3,6-tetra-hydro-6-oxopyrimidine-4-carboxylate (7)

Orange powder; yield: $1.465 \mathrm{~g}, 62 \%$ (from 6, reaction time: 3 h); mp 110-112 ${ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Fe}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}$ (591.22): C, 56.88 ; H, 4.26; N, 11.85. Found: C, 56.99; H, 4.20; N, 11.94\%.

5.12. Thermal transformation trans-3 $\boldsymbol{\rightarrow} \mathbf{2}$ (Method B)

Thiazole-dicarboxylate trans-3 ($0.640 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in anhydrous and degassed $\mathrm{MeCN}(15 \mathrm{~mL})$ and the solution was refluxed under Ar for 8 h then evaporated to dryness. The oily residue was triturated with n-hexane and filtered off to obtain $\mathbf{2}$ as dark orange powder without any ferrocene-containing contamination as it was shown by silica-TLC analysis using chloroform and DCM$\mathrm{MeOH}(100: 1)$, respectively, as eluent. Yield: $0.553 \mathrm{~g}, 91 \%$. Within experimental error the analytical and spectral data were identical with those listed under Method A.

5.13. S-methylation of $\mathbf{1}$ and $\mathbf{1 1}$ (Method C)

Thiocarbonodihydrazide 1 or triazole-thion $\mathbf{1 1}$ (5 mmol) and iodomethane ($0.71 \mathrm{~g}, 5 \mathrm{mmol}$) was added in turn to the solution obtained by dissolving sodium ($0.115 \mathrm{~g}, 5 \mathrm{mmol}$) in methanol $(25 \mathrm{~mL})$. The reaction mixture was stirred and refluxed under argon for 1 h . The solvent was evaporated to dryness, and the solid residue was purified by flash column chromatography on silica, using DCM as eluent. The oily product resulted from the evaporation of the eluent was triturated with n-hexane, filtered off and dried to obtain $\mathbf{4}$ and 5, respectively. Triazole 5 was obtained as deep orange powder. Yield: 2.092 g , (82\%). Within experimental error the analytical and spectral data of this product were identical with those listed under Method A.

5.14. 1,3-Bis(ferrocenylmethylideneamino)-2-methylisothiourea (4)

Deep red powder. Yield: $2.380 \mathrm{~g}, 93 \%$; mp $79-81^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}(512.24)$: C, 56.28; H, 4.72; N, $10.94 \mathrm{~S}, 6.26$. Found: C, 56.37; H, 4.82; N, 11.02, S, 6.24\%.

5.15. Reactions of $\mathbf{1}$ and $\mathbf{1 4}$ [4] with chloroacetic acid (Methods D and E)

(According to Method D the reaction mixture was exposed to air, while using Method E the reaction was conducted under Ar.) To a well stirred solution of NaOMe , made of methanol (25 mL) and sodium ($0.047 \mathrm{~g}, 2 \mathrm{mmol}$), 2 mmol of the corresponding precursor and chloroacetic acid $(0.189 \mathrm{~g}, 2 \mathrm{mmol})$ were added in sequence. The resulting mixture was heated at reflux temperature for 1 h . The solvent was evaporated, and the solid residue was partitioned between DCM $(100 \mathrm{~mL})$ and $10 \% \mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic phase was washed with water ($2 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude thiazolone 16 obtained from the reaction of 14 was purified by flash column chromatography on silica [eluent: DCM-MeOH (30:1)] followed by crystallization with ethanol. The crude residue obtained from the reaction of $\mathbf{1}$ was also subjected to flash column chromatography on silica [eluent:n-hexane-EtOAc (5:1)] to separate $\mathbf{1 0}$ (first band) and $\mathbf{1 1}$ (second band) which were crystallized with $\mathrm{Et}_{2} \mathrm{O}$. The crude residue obtained from each reaction was contaminated by black tarry substances removed by chromatography.

5.16. 2-Ferrocenyl-1-(5-ferrocenyl-1,3,4-thiadiazol-2-yl)hydrazine (10)

Orange powder; yield: 0.317 g, 32% (Method D); 0.396 g (40\%) (Method E); $\mathrm{mp} 210-213^{\circ} \mathrm{C}$ (decomp.); Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}$ (496.20): C, 55.67; H, 4.06; N, 11.29; S, 6.46. Found: C, 55.80; H, 3.98; N, 11.19; S, 6.50\%.

5.17. 4-(Ferrocenylideneamino)-5-ferrocenyl-2H-1,2,4-triazole-3(4H)-thione (11)

Orange powder; yield: $0.089 \mathrm{~g}, 9 \%$ (Method D); $0.139 \mathrm{~g}, 14 \%$ (Method E); mp $235-238{ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}$ (496.20): C, 55.67; H, 4.06; N, 11.29; S, 6.46. Found: C, 55.77; H, 4.15; N, 11.35; S, 6.56\%.

5.18. 2-(2-Ferrocenylmethylidenehydrazono)thiazolidin-4-one (16)

Red microcrystals; yield: $0.301 \mathrm{~g}, 46 \%$ (Method D); $0.386 \mathrm{~g}, 59 \%$ (Method E); mp $232-235^{\circ} \mathrm{C}\left(234-236{ }^{\circ} \mathrm{C}\right.$ in Ref. [14]); Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FeN}_{3} \mathrm{OS}$ (327.18): C, 51.39; H, 4.00; N, 12.84; S, 9.80. Found: C, 51.10; H, 4.12; N, 13.02; S, 9.96\%.

5.19. Oxidation of $\mathbf{1}$ by $\mathrm{FeCl}_{3}($ Method $F)$

At rt. 1 ($0.996 \mathrm{~g}, 2 \mathrm{mmol}$) was added to $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(1.350 \mathrm{~g}$, 5 mmol) dissolved in $\mathrm{EtOH}(25 \mathrm{~mL})$. The reaction mixture was refluxed for 30 min . then was stirred for 12 h at rt . After addition of water (100 mL) the dark precipitated solid was filtered off, thoroughly washed with water and dried. The separation and purification of $\mathbf{1 0}$ and $\mathbf{1 1}$ was carried out according to the procedure described in Methods D and E. Yield: $0.615 \mathrm{~g}, 62 \%$ (10); 0.268 g , 27\% (11). Within experimental error the analytical and spectral data were identical with those listed under Methods D and E.

5.20. Thermal transformation $\mathbf{1 0} \rightarrow \mathbf{1 1}($ Method $G)$

In dry degassed xylene (20 mL) $\mathbf{1 0}(0.496 \mathrm{~g}, 1 \mathrm{mmol})$ was suspended. The reaction mixture was refluxed under Ar for 5 h then evaporated to dryness. The crude product was purified by flash column chromatography on silica [eluent: n-hexane-EtOAc (5:1)] and crystallized with $\mathrm{Et}_{2} \mathrm{O}$ to obtain 11 as dark orange powder. Yield: $0.248 \mathrm{~g}(50 \%)$. Within experimental error the analytical and spectral data of the single product were identical with those listed under Methods D and E.

5.21. 1,3-Bis(ferrocenylmethylideneamino)-2(ethoxycarbonyl)methylisothiourea (12) (Method H)

To the stirred suspension made of $\mathbf{1}(2.491 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.345 \mathrm{~g}, 2.5 \mathrm{mmol}$) and anhydrous acetone (75 mL) ethyl chloroacetate ($0.735 \mathrm{~g}, 6 \mathrm{mmol}$) dissolved in acetone (5 mL) was added dropwise at $25^{\circ} \mathrm{C}$ over 5 min . The reaction mixture was then refluxed for 1 h and and evaporated to dryness. To the thick oily residue DCM (50 mL) was added, and the undissolved salts were removed by filtration. The solution was extracted with water $(2 \times 50 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash column chromatography on silica using DCMMeOH ($80: 1$) as eluent and recrystallized from cyclohexane to obtain orange powder; yield: $2.162 \mathrm{~g}, 74 \%$; mp $82-85^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (584.29): C, 55.50; H, 4.83; N, 9.59; S, 5.49. Found: C, 55.42; H, 4.93; N, 9.64; S, 5.43\%.

5.22. 2-(2-ferrocenylmethylidenehydrazono)-

3-(ferrocenylmethylideneamino)thiazolidin-4-one (9) (Method I)
To the solution of the $12(0.584 \mathrm{~g}, 1 \mathrm{mmol}$ in 10 mL of DCM$)$ Takemoto-catalyst ($0.062 \mathrm{~g}, 0.15 \mathrm{mmol}$) was added and the solution was stirred at $40^{\circ} \mathrm{C}$ under Ar for 5 h . The reaction mixture was evaporated and the product was purified by flash column chromatography on silica using n-hexane-EtOAc ($5: 1$) and recrystallized from cyclohexane to obtain orange powder. Yield: $0.484 \mathrm{~g}, 90 \%$;mp $115-117{ }^{\circ} \mathrm{C}$; Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{OS}$ (538.22): C, 55.79 ; H, 4.12; N, 10.41; S, 5.96. Found: C, 55.88; H, 4.04; N, 10.51; S, 6.00\%.

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA T-043634 and TS-044742). The authors are indebted to Dr. Hedvig Medzihradszky-Schweiger for analyses and to Mr. Ádám Gyömöre for recording the IR spectra.

References

[1] A. Togni, T. Hayashi (Eds.), Ferrocenes, VCH Verlagsgessellschaft, Weinheim, 1995.
[2] (a) B. Weber, A. Serafin, J. Michie, C. Van Rensburg, J.C. Swarts, L. Bohm, Anticancer Res. 24 (2B) (2004) 763. CAN 142:32558;
(b) G. Jaouen, S. Top, A. Vessieres, G. Leclercq, M.J. McGlinchey, Curr. Med. Chem. 11 (18) (2004) 2505. CAN 141:167093.
[3] V. Zsoldos-Mády, A. Csámpai, R. Szabó, E. Mészáros-Alapi, J. Pásztor, F. Hudecz, P. Sohár, ChemMedChem 1 (2006) 1119. CAN 147:22684; and Ref.'s therein.
[4] B. Fábián, V. Kudar, A. Csámpai, T.Zs. Nagy, P. Sohár, J. Organomet. Chem. 692 (2007) 5621. and Ref.'s therein.
[5] (a) R.H. Mourao, T.G. Silva, A.L.M. Soares, E.S. Vieira, J.N. Santos, M.C.A. Lima, V.L.M. Lima, S.L. Galdino, J. Barbe, I.R. Pitta, Eur. J. Med. Chem. 40 (2005) 1129; (b) G. He, Y.-M. Sung, J. DiGiovanni, S.M. Fischer, Cancer Res. 66 (3) (2006) 1873. CAN 144:142357.
[6] (a) K. Ohno, R. Tsutsumi, N. Matsumoto, H. Yamashita, Y. Amada, J.-I. Shishikura, H.I.S.I. Yatsugi, M. Okada, S. Sakamoto, T. Yamaguchi, J. Pharmacol. Exp. Ther. 306 (1) (2003) 66. CAN 139:332952;
(b) H. Takeuchi, T. Mizuno, G. Zhang, J. Wang, J. Kawanokuchi, R. Kuno, A. Suzumara, J. Biol. Chem. 280 (11) (2005) 10444. CAN 142:278019.
[7] (a) L. Riou, E. Eveno, A. van Hoffen, A.A. van Zeeland, A. Sarasin, L.H.F. Mullenders, Cancer Res. 64 (3) (2004) 889. CAN 140:197430;
(b) R.L. Jarvest, S.A. Armstrong, J.M. Berge, P. Brown, J.S. Elder, M.J. Brown, R.C.B. Copley, A.K. Forrest, D.W. Hamprecht, P.J. O'Hanlon, D.J. Mitchell, S. Rittenhouse, D.R. Witty, Bioorg. Med. Chem. Lett. 14 (15) (2004) 3937. CAN 141:167232;
(c) K.-i. Shinohara, T. Bando, S. Sasaki, Y. Sakakibara, M. Minoshima, H. Sugiyama, Cancer Sci. 97 (3) (2006) 219. CAN 145:431752;
(d) Y. Ji, H.J. Lee, C. Goodman, M. Uskokovic, K. Liby, M. Sporn, N. Suh, Mol. Cancer Ther. 5 (6) (2006) 1452. CAN 145:306037.
[8] (a) D.R. Hannah, E.C. Sherer, R.V. Davies, R.B. Titman, C. Laughton, M.F. Stevens, Bioorg. Med. Chem. 8 (4) (2000) 739. CAN 133:105004;
(b) J. Li, Y.F. Zhao, X.L. Zhao, X.Y. Yuan, P. Gong, Arch. Pharm. 339 (11) (2006) 593. PubMed ID 17036367;
(c) S. Palwinder, P. Kamaldeep, Bioorg. Med. Chem. 14 (24) (2006) 8622. CAN 146:19391.
[9] M.M. Heravi, N.B. Navabeh, H.O. Oskooie, R. Hekmatshoar, J. Chem. Res. 11 (2006) 722.
[10] A. Shavali, A. Sayed, J. Sulfur Chem. 27 (3) (2006) 233.
[11] (a) P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864;
(b) W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133;
(c) R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989;
(d) W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
[12] T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 125 (2003) 12672.
[13] M.A. Badawy, S.A. Abdel-Hadi, Y.A. Ibrahim, Liebigs Ann. Chem. 4 (1990) 393.
[14] F.D. Popp, E.B. Moynahan, J. Med. Chem. 13 (5) (1970) 1020.
[15] (a) H. Braunschweig, K. Radacki, D. Rais, F. Seeler, Organometallics 23 (2004) 5545;
(b) M. Scheibitz, M. Bolte, J.W. Bats, H.-W. Lerner, I. Nowik, R.H. Herber, A. Krapp, M. Lein, M.C. Holthausen, M. Wagner, Chem. A Eur. J. 11 (2004) 584.
[16] M. Karplus, J. Chem. Phys. 30 (1959) 11. 33 (1960) 1842.
[17] P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, Florida, 1983 (a) 2, p. 12; b) 1, 32, 33 and 2, p. 51; (c) 3, pp. 4-6; (d) 2, p. 149.
[18] E. Pretsch, T. Clerc, J. Seibl, N. Simon, Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden, Springer Verlag, Berlin, 1976 (a) p. C10; (b) p. C90.
[19] GAuSSIAN 03, Revision A.1, M.J. Frisch et al., Gaussian Inc., Pittsburgh PA, 2003. [20] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 1372;
(b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[21] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257;
(b) V. Rassolov, J.A. Pople, M. Ratner, T.L. Windus, J. Chem. Phys. 109 (1998) 1223.
[22] G.M. Sheldrick, shelxs97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.
[23] G.M. Sheldrick, shelxL97, Program for the Refinement of Crystal Sructures, University of Göttingen, Germany, 1997.

[^0]: \# Study on ferrocenes. Part 22. Part 21. see Ref. [4].

 * Corresponding authors. Address: Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest-112, Hungary. Tel.: +36 1372 2911; fax: +36 1 3722592 (P. Sohár).

 E-mail address: sohar@chem.elte.hu (P. Sohár).

[^1]: ${ }^{\text {a }}$ In CDCl_{3} or DMSO- $\mathrm{d}_{6}\left(\mathbf{1}, \mathbf{6}, 11,12\right.$ and 16) solution at 500 MHz . Chemical shifts in ppm ($\delta_{\text {TMS }}=0 \mathrm{ppm}$), coupling constants in Hz .
 ${ }^{\mathrm{b}}$ Further ${ }^{1} \mathrm{H}$ NMR signals: $=\mathrm{CH}, \mathrm{s}(1 \mathrm{H}$): 6.96 (on C-5 in 2), 6.05 (Pos. 5, 7), 4.88 (side chain, 8); H-5: 4.24, d, J: 3.2 (trans-3), 4.59, d, J: 7.7 (cis-3), 6.09, s(8); H-4, d: 5.40 (trans3), 5.01 (cis-3), $\mathrm{CH}_{3}(t, 12): 1.20(J: 7.2)$.
 ${ }^{\text {c }}$ Assignments were supported by HMQC (except for $\mathbf{1 6}$) and H,C-HMBC (except for $\mathbf{6}$), for trans- $\mathbf{3}$ also by 2D-COSY, for trans-3, cis- $\mathbf{3}$ and $\mathbf{8}$ by DIFFNOE measurements.
 ${ }^{\mathrm{d}} \mathrm{Fc}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=$ group, for $\mathbf{8}$ and $\mathbf{1 1} \mathrm{Fc}$ attached to the $s p^{3}$ or $s p^{2} \mathrm{C}$ in the heteroring.
 ${ }^{\text {e }} \mathrm{Fc}-\mathrm{CH}=\mathrm{N}-\mathrm{N}\left(s^{3}\right)$.
 ${ }^{\mathrm{f}}$ Unsubstituted Cp ring, interchangeable assignments.
 ${ }^{\text {g }}$ Due to molecular asymmetry (presence of chiral centra) the 2,5 - and $3,4-\mathrm{H}$ pairs of subst. Cp rings in Fc are chemically non-equivalent in each case. Counterparts of lines given in the Table: $\mathrm{H}-2,5: 4.65^{\mathrm{d}}, 4.69^{\mathrm{e}}$ (trans-3), $4.65^{\mathrm{d}}, 4.71^{\mathrm{e}}\left(\right.$ cis-3), $4.54^{\mathrm{d}}, 4.37^{\mathrm{e}}(8), \mathrm{H}-3,4: 4.34^{\mathrm{d}}, 4.22^{\mathrm{e}}(\mathbf{8})$.
 ${ }^{\text {h }}$ Overlapping signals.
 ${ }^{i}$ Interchangeable assignments.
 ${ }^{j} 3 \mathrm{H}$.
 ${ }^{\mathrm{k}} \mathrm{CH}_{2}$.
 ${ }^{1} \mathrm{OCH}_{2}$.

[^2]: ${ }^{\text {a }}$ In CDCl_{3} (DMSO-d ${ }_{6}$ for 11) solution at 50.7 MHz . Chemical shifts in ppm $\left(\delta \mathrm{NH}_{3}=0 \mathrm{ppm}\right)$.
 ${ }^{\text {b }}$ Assignments are based on ${ }^{1} \mathrm{H}^{15} \mathrm{~N}-\mathrm{HMBC}$ measurements.
 ${ }^{\text {c }} \mathrm{NH}$.

